注册 登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

ReclusiveAnt的博客

至简而默----渺小蚂蚁

 
 
 

日志

 
 

圆锥曲线  

2016-09-01 16:59:15|  分类: 数学小结 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
圆锥曲线的两个定义,及其括号内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用. 1)注意:圆锥曲线第一定义与配方法的综合运用; 圆锥曲线第二定义是:点点距为分子、点线距为分母,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1圆锥曲线的焦半径公式如下图:                           2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 重视特征直角三角形、焦半径的最值、焦点弦的最值及其顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点. 注意:等轴双曲线的意义和性质. 3.在直线与圆锥曲线的位置关系问题中,有函数方程思想数形结合思想两种思路,等价转化求解.特别是: 直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有判别式≥0” 直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理. 在直线与圆锥曲线的位置关系问题中,常与相关,平行弦问题的关键是斜率中点弦问题关键是韦达定理小小直角三角形点差法长度(弦长)问题关键是长度(弦长)公式 ,   )或小小直角三角形 如果在一条直线上出现三个或三个以上的点,那么可选择应用斜率为桥梁转化. 4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点. 注意:如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行摘帽子或脱靴子转化,还是选择向量的代数形式进行摘帽子或脱靴子转化. 曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的完备性与纯粹性的影响. 在与圆锥曲线相关的综合题中,常借助于平面几何性质数形结合(如角平分线的双重身份)、方程与函数性质化解析几何问题为代数问题、分类讨论思想化整为零分化处理、求值构造等式、求变量范围构造不等关系等等. 九、直线、平面、简单多面体 1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算 2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线. 3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范. 特别声明: 证明计算过程中,若有中点等特殊点线,则常借助于中位线、重心等知识转化. 在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决. 如果根据已知条件,在几何体中有三条直线两两垂直,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题. 4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质. 如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), 如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心. 如正四面体和正方体中: 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体      分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是        6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体. 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,  即正四面体、正六面体、正八面体、正十二面体、正二十面体.          
  评论这张
 
阅读(2)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018